Existence of concentration optimizers in phase space

S. Ivan Trapasso

A joint work with Fabio Nicola and José Luis Romero

Workshop on Quantum Harmonic Analysis – Trondheim

June 7, 2023

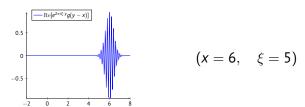
Gabor wave packets

A Gabor atom is a function of the type

$$\pi(x,\xi)g(y)=e^{2\pi i\xi\cdot y}g(y-x),$$

where

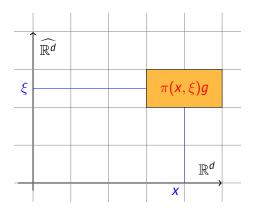
- $g \in L^2(\mathbb{R}^d)$ is a function possessing good localization in phase space $\mathbb{R}^d \times \widehat{\mathbb{R}^d} \simeq \mathbb{R}^{2d}$ – e.g., a Gaussian function $g(y) = e^{-\pi |y|^2}$
- $\pi(x,\xi) = M_{\xi}T_x$ is the phase space shift along $(x,\xi) \in \mathbb{R}^{2d}$, with $M_{\xi}f(y) = e^{2\pi i\xi \cdot y}f(y), \quad T_xf(y) = f(y-x), \quad y \in \mathbb{R}^d.$



Gabor analysis of functions

Decomposition of $f \in L^2(\mathbb{R}^d)$ along Gabor wave packets is known as the **Gabor transform** (or short-time Fourier transform):

$$V_g f(x,\xi) \coloneqq \langle f, \pi(x,\xi)g \rangle = \int_{\mathbb{R}^d} e^{-2\pi i y \cdot \xi} f(y) \,\overline{g(y-x)} \, dy, \quad (x,\xi) \in \mathbb{R}^{2d}.$$



The choice of the atom

Fixed Gaussian window ~~> FBI tr., Bargmann-Fock-Segal tr., ...

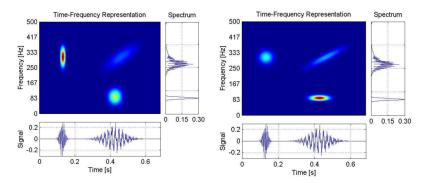


Figure: Plot of $|V_g f|^2$ with narrow vs wide time Gaussian window g DOI: 10.2478/mms-2014-0054

TFA without auxiliary functions?

"Pure" phase space representation of $f \rightsquigarrow$ quadratic transforms

The standard pathway: from L(f,g) to Q(f) := L(f,f).

Problem: cross interferences do appear!

 $\mathcal{Q}(\alpha_1 f_1 + \alpha_2 f_2) = |\alpha_1|^2 \mathcal{Q}(f_1) + \alpha_1 \overline{\alpha_2} \mathcal{L}(f_1, f_2) + \overline{\alpha_1} \alpha_2 \mathcal{L}(f_2, f_1) + |\alpha_2|^2 \mathcal{Q}(f_2).$

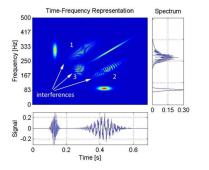


Figure: DOI: 10.2478/mms-2014-0054

The ambiguity distribution

Consider the **ambiguity transform** of $f \in L^2(\mathbb{R}^d)$:

$$Af(x,\xi) \coloneqq e^{\pi i x \cdot \xi} V_f f(x,\xi) = \int_{\mathbb{R}^d} e^{-2\pi i y \cdot \xi} f(y+x/2) \overline{f(y-x/2)} dy.$$

In general, the cross-ambiguity transform of $f,g \in L^2(\mathbb{R}^d)$ is

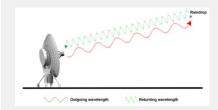
$$A(f,g)(x,\xi) \coloneqq \int_{\mathbb{R}^d} e^{-2\pi i y \cdot \xi} f(y+x/2) \overline{g(y-x/2)} dy.$$

Nice properties of the ambiguity function:

• Af
$$\in$$
 C(\mathbb{R}^{2d}) and $\lim_{|(x,\xi)| o \infty} |Af(x,\xi)| = 0$

Example (RADAR vs UFO

[Gröchenig - Found. TFA, 2001])



Send a pulse $f(t) = e^{2\pi i \omega_0 \cdot t} \sigma(t),$

$$\operatorname{supp}(\hat{f}) \subseteq [\omega_0 - A, \omega_0 + A], A/\omega_0 \ll 1.$$

Echo travels (twice) a distance ℓ at speed $c \Rightarrow$ time lag $\Delta t \approx 2\ell/c$. Doppler effect \Rightarrow frequency shift $\Delta \omega \approx -2\omega_0 v/c$.

Received echo has the form $e = M_{\Delta\omega} T_{\Delta t} f$

 \Rightarrow compare with TF shifts of $f: |\langle e, M_{\omega}T_{t}f \rangle| = |Af(t - \Delta t, \omega - \Delta \omega)|.$

 $\max_{(x,\xi)\in\mathbb{R}^{2d}}|A\!f(x,\xi)|=A\!f(0,0)\Rightarrow\text{empirical estimate of }\Delta t,\Delta\omega.$

Desirable ambiguity profiles

The RADAR example shows that one would like to design pulses f with "thumbtack" ambiguity distribution near the origin.

Problem: the uncertainty principle

Arbitrarily high concentration in phase space is forbidden.

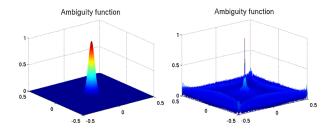


Figure: *Af* for Gaussian (left) and high-order Hermite functions (right) DOI: 10.1007/s10444-013-9323-2

What about the ambiguity concentration?

Given a phase space subset $\Omega \subset \mathbb{R}^{2d}$ of finite (non-zero) measure and $1 \le p \le \infty$, consider the L^p ambiguity concentration measure

$$\|Af\|_{L^p(\Omega)} = \Big(\int_{\Omega} |Af(x,\xi)|^p dxd\xi\Big)^{1/p}.$$

Problem. Are there functions that attain the optimal concentration

$$\sup \left\{ \|Af\|_{L^{p}(\Omega)} : \|f\|_{L^{2}} = 1 \right\}?$$

Direct method of calc. var. for existence of optimizers of $F: X \to \mathbb{R}$:

(sequential) compactness of X

+ (semi)continuity of F

Enemy #1 - defect of compactness (and its source)

Consider the time-frequency shifts $\{\pi(z) = M_{\omega}T_t : z = (t, \omega) \in \mathbb{R}^{2d}\}$.

For any $f \in L^2(\mathbb{R}^d)$ and any sequence $(z_n)_{n \in \mathbb{N}}$ in \mathbb{R}^{2d} such that $|z_n| \to +\infty$, we have

$$\pi(z_n)f o 0$$
 weakly in L^2 as $n o +\infty$

- indeed, recall that $|\langle \pi(z_n)f,g\rangle| = |V_gf(-z_n)|$ and $V_gf \in C_0(\mathbb{R}^{2d})$.

Problem: the functional is invariant under TF shifts!

$$|A(\pi(z)f)(x,\xi)| = |Af(x,\xi)|, \qquad \forall z \in \mathbb{R}^{2d}, \ (x,\xi) \in \mathbb{R}^{2d}.$$

Loss of compactness by non-compact group actions

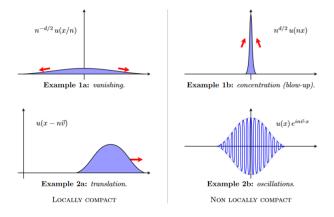


FIGURE 1. Four typical behaviors of a sequence $\{u_n\} \subset L^2(\mathbb{R}^d)$ with $u_n \to 0$ while $\int_{\mathbb{R}^d} |u_n|^2 = \lambda$ for all n. In the examples, u is a fixed (smooth) function in $L^2(\mathbb{R}^d)$, such that $\int_{\mathbb{R}^d} |u|^2 = \lambda$.

Figure: M. Lewin via hal-02450559

Enemy #2 – failure of semicontinuity

Fact 1. If *g* is a Gaussian function and $|\Omega| > 0$, then $||Ag||_{L^2(\Omega)} > 0$.

Fact 2. An asymptotic decoupling estimate of Brezis-Lieb type holds: for every $f \in L^2(\mathbb{R}^d)$ and sequence $(z_n)_{n \in \mathbb{N}} \subset \mathbb{R}^{2d}$ s. t. $|z_n| \to +\infty$, $\lim_{n \to +\infty} \|A(f + \pi(z_n)g)\|_{L^2(\Omega)}^2 = \|Af\|_{L^2(\Omega)}^2 + \|Ag\|_{L^2(\Omega)}^2.$

As a result, we obtain the lack of sequential weak upper semicontinuity of the functional $f \mapsto ||Af||_{L^2(\Omega)}$:

$$\pi(z_n)g
ightarrow 0$$
 but $\lim_{n
ightarrow +\infty} \|A(f + \pi(z_n)g)\|_{L^2(\Omega)}^2 > \|Af\|_{L^2(\Omega)}^2.$

Nevertheless... good news!

Existence of optimizers[Nicola, Romero, T. - Calc. Var. 2023]Let $\Omega \subset \mathbb{R}^{2d}$ be a measurable subset of finite measure $|\Omega| > 0$.

Existence of an ambiguity concentration optimizer If $1 \le p < \infty$, there exists $\tilde{f} \in L^2(\mathbb{R}^d)$ with $\|\tilde{f}\|_{L^2} = 1$ such that

$$\|A\widetilde{f}\|_{L^p(\Omega)} = \sup\{\|Af\|_{L^p(\Omega)} : \|f\|_{L^2} = 1\}.$$

■ Approaching the optimizer via (sub)sequences If 1 (n)</sup> there exist z⁽ⁿ⁾ ∈ ℝ^{2d} such that, passing to subsequences,

$$\pi(-z^{(n)})f^{(n)}\to \tilde{f}$$
 in L^2 .

Dealing with defects of compactness

We resort to ideas and techniques of **concentration compactness**¹: consider again the optimization of a functional $F: X \to \mathbb{R}$.

- Tradeoff between a "strong topology" (with few compact sets) and a "weak topology" (with few continuous functionals)
- CC phenomenon: there is an "intermediate topology" where *F* is continuous but *X* is not s. compact, yet any sequence $x^{(n)}$ converges "intermediately" to a sequence $y^{(n)} = \sum_j y_j^{(n)}$ that consists *only* of profiles $y_j^{(n)}$ causing lack of compactness.

¹Sacks-Uhlenberg (1981), Brezis-Nirenberg (1983), Lions (1984), Struwe (1984), Brezis-Coron (1985), Lions (1985), Tintarev-Fieseler (2007, 2020).

A toy model – X: unit sphere in $\ell^2(\mathbb{Z})$

"Strong top." by ℓ^2 norm convergence: $x^{(n)} \to 0$ iff $||x^{(n)}||_{\ell^2} \to 0$.

"Weak top." by weak convergence: $x^{(n)} \rightarrow 0$ iff $\langle x^{(n)}, u \rangle \rightarrow 0 \ \forall u \in \ell^2$.

X is invariant under shifts T^n , $n \in \mathbb{Z}$, and also not weakly closed.

"Intermediate top." by ℓ^∞ norm convergence – indeed, one has

$$\|x^{(n)}\|_{\ell^{\infty}} \to 0 \quad \Longleftrightarrow \quad \langle T^{h^{(n)}}x^{(n)}, u \rangle \to 0 \quad \forall u \in \ell^2, (h^{(n)})_n \subset \mathbb{Z}.$$

The intermediate topology is thus equivalent to the one induced by D-weak convergence associated with translation group (dislocations).

Travelling profiles in $\ell^2(\mathbb{Z})$

The travelling **profiles** $T^{h^{(n)}}x^{(n)}$ are the source of lack of weak comp.

Isolating dislocated profiles leads to a refinement of Banach-Alaoglu theorem, namely profile decompositions of a sequence $x^{(n)} \in X$:

$$x^{(n)} = \sum_{j=1}^{k} T^{h_{j}^{(n)}} x_{j} + w_{k}^{(n)}, \qquad k \geq 1,$$

- **Asymptotic orthogonality:** $|h_j^{(n)} h_{j'}^{(n)}| \to \infty$ as $n \to \infty$, $j \neq j'$,
- Conservation of mass: $\sum_{j=1}^{k} \|x_j\|_{\ell^2}^2 + \limsup_{n \to \infty} \|w_k^{(n)}\|_{\ell^2}^2 \le 1$,

Vanishing IT remainder: $\lim_{k\to\infty} \lim \sup_{n\to\infty} \|w_k^{(n)}\|_{\ell^{\infty}} = 0$.

Time-frequency profile decompositions in $L^2(\mathbb{R}^d)$

Dislocations: time-frequency shifts $\{\pi(z) : z \in \mathbb{R}^{2d}\}$

D-weak convergence: uniform convergence of Gabor transforms

$$f^{(n)} o_D f \Longleftrightarrow \sup_{z \in \mathbb{R}^{2d}} |\langle f^{(n)} - f, \pi(z)g \rangle| = \|V_g(f^{(n)} - f)\|_{\infty} o 0 \quad \forall g \in L^2.$$

Profile decompositions: if $\limsup_{n\to\infty} \|f^{(n)}\|_{L^2} \leq 1$,

$$f^{(n)} = \sum_{j=1}^{k} \pi(z_j^{(n)}) f_j + w_k^{(n)}, \qquad k \ge 1.$$

$\begin{array}{l} \textbf{Step 1} - \textbf{ambiguity and profiles} \\ \textbf{Step 0: } L \coloneqq \sup \Big\{ \frac{\|Af\|_{L^p(\Omega)}}{\|f\|_{L^2}^2} : f \in L^2(\mathbb{R}^d) \setminus \{0\} \Big\} \Longrightarrow 0 < L \leq |\Omega|^{1/p}. \end{array}$

Let $f^{(n)}$ be a L^2 -normalized maximizing sequence – $||f^{(n)}||_{L^2} = 1$. After passing to a subsequence, consider profile decompositions:

$$f^{(n)} = F_k^{(n)} + w_k^{(n)}, \qquad F_k^{(n)} \coloneqq \sum_{j=1}^k \pi(z_j^{(n)}) f_j$$

The sesquilinearity of the ambiguity function yields

$$\begin{split} \mathsf{A}(f^{(n)}) &= \sum_{j=1}^{k} \mathsf{A}(\pi(z_{j}^{(n)})f_{j}) + \sum_{\substack{1 \leq j, j' \leq k \\ j \neq j'}} \mathsf{A}(\pi(z_{j}^{(n)})f_{j}, \pi(z_{j'}^{(n)})f_{j'}) \\ &+ \mathsf{A}(\mathsf{F}_{k}^{(n)}, \mathsf{w}_{k}^{(n)}) + \mathsf{A}(\mathsf{w}_{k}^{(n)}, \mathsf{F}_{k}^{(n)}) + \mathsf{A}(\mathsf{w}_{k}^{(n)}). \end{split}$$

Step 2 – domesticate interferences

Consider now the L^p norms: triangle inequality + TF invariance yield

$$\| \mathcal{A}(f^{(n)}) \|_{L^p(\Omega)} \leq \sum_{j=1}^k \| \mathcal{A}(f_j) \|_{L^p(\Omega)} + \mathcal{R}_k^{(n)},$$

where the remainder satisfies $\lim_{k\to\infty} \limsup_{n\to\infty} R_k^{(n)} = 0$:

•
$$||A(w_k^{(n)})||_{L^p(\Omega)} \to 0$$
 similarly

Step 3 – existence of a maximizer

Recall that
$$L := \sup \Big\{ \frac{\|Af\|_{L^{\rho}(\Omega)}}{\|f\|_{L^{2}}^{2}} : f \in L^{2}(\mathbb{R}^{d}) \setminus \{0\} \Big\}.$$

Passing to limits in the profile decomposition yields

$$L = \lim_{n \to \infty} \|A(f^{(n)})\|_{L^p(\Omega)} \leq \sum_{j=1}^{\infty} \|A(f_j)\|_{L^p(\Omega)}.$$

On the other hand, by the very definition of *L*, $||A(f_j)||_{L^p(\Omega)} \le L ||f_j||_{L^2}^2$. Therefore, we infer

$$L \leq \sum_{j=1}^{\infty} \|A(f_j)\|_{L^p(\Omega)} \leq L \sum_{j=1}^{\infty} \|f_j\|_{L^2}^2 \leq L.$$

Inequalities must be equalities, hence $||Af_j||_{L^p(\Omega)} = L||f_j||_{L^2}^2$ for all *j*. Any non-null profile f_j is then a maximizer – there is at least one. S. Ivan Trapasso • Existence of concentration optimizers in phase space 20/27

Step 4 – approaching an optimizer

If p > 1, the stronger claim $\pi(-z^{(n)})f^{(n)} \to \tilde{f}$ in L^2 for suitable $z^{(n)}$ and subsequences requires additional work.

Asymptotic decoupling estimates for the ambiguity function must be refined via **asymptotic interpolation**: setting $p^* = \min\{p, p'\}$,

$$\limsup_{n\to\infty}\left\|\sum_{j=1}^k A(\pi(z_j^{(n)})f_j)\right\|_{L^p(\Omega)} \leq \left(\sum_{j=1}^k \|A(f_j)\|_{L^p(\Omega)}^{p^*}\right)^{1/p^*}$$

Arguing as above, for p > 1 inequalities are equalities iff all but one profile (say f_1) are null. Then, $f^{(n)} = \pi(z_1^{(n)})f_1 + w_1^{(n)}$ with $||f_1||_{L^2} = 1$.

Since $\pi(z_1^{(n)})^* f^{(n)} \rightharpoonup f_1$ by construction and $||f^{(n)}||_{L^2} = ||f_1||_{L^2} = 1$ we infer that

$$\pi(-z_1^{(n)})f^{(n)} \rightarrow cf_1 \text{ in } L^2.$$

Related results

[Nicola, Romero, T. – Calc. Var., 2023]

The case
$$p = \infty$$

sup $\left\{ \frac{\|Af\|_{L^{\infty}(\Omega)}}{\|f\|_{L^{2}}^{2}} : f \in L^{2}(\mathbb{R}^{d}) \setminus \{0\} \right\} = 1$ and it is attained iff
 $|\Omega \cap B_{r}| > 0$ for every $r > 0$, where $B_{r} = \{z \in \mathbb{R}^{2d} : |z| < r\}$.
In this case, every $f \in L^{2}(\mathbb{R}^{d}) \setminus \{0\}$ is a maximizer.

Failure for separate time/frequency auto-correlation

$$\sup_{f\in L^2(\mathbb{R}^d)\setminus\{0\}}\frac{\left(\int_{\Omega}|\langle f,T_xf\rangle|^pdx\right)^{1/p}}{\|f\|_{L^2}^2}=|\Omega|^{1/p}$$

and the supremum is not attained. Similarly for $|\langle f, M_{\xi}f \rangle|$.

Modulation spaces

For 0 we introduce the**modulation spaces**

$$\mathcal{M}^{p}(\mathbb{R}^{d}) = \left\{ f \in \mathcal{S}'(\mathbb{R}^{d}) : \|f\|_{\mathcal{M}^{p}} < \infty \right\},\$$

where $\|f\|_{M^p(\mathbb{R}^d)} \coloneqq \|\langle f, \pi(\cdot)g \rangle\|_{L^p(\mathbb{R}^{2d})}$ for some (hence any) $g \in \mathcal{S}(\mathbb{R}^d)$.

A *scale* of (quasi-)Banach spaces: if $p \leq q$ then $M^p \subseteq M^q$.

Variations on a theme

Modulation spaces

[Nicola, Romero, T. - Calc. Var., 2023]

Let $\Omega \subset \mathbb{R}^{2d}$ be a measurable subset of finite measure $|\Omega| > 0$.

Existence of an ambiguity concentration optimizer

If $1 \leq p < \infty$ and 0 < q < 2, there exists $\widetilde{f} \in M^q(\mathbb{R}^d)$ such that

$$\frac{\|A\widetilde{f}\|_{L^p(\Omega)}}{\|\widetilde{f}\|_{M^q}^2} = \sup\Big\{\frac{\|Af\|_{L^p(\Omega)}}{\|f\|_{M^q}^2} : f \in M^q(\mathbb{R}^d) \setminus \{\mathsf{0}\}\Big\}.$$

Approaching the optimizer via (sub)sequences

If 1 and <math>0 < q < 2, for every M^q -normalized maximizing sequence $f^{(n)}$ there exist $z^{(n)} \in \mathbb{R}^{2d}$ such that

$$\pi(-z^{(n)})f^{(n)} o \widetilde{f}$$
 in M^q .

Comments

How to get profile decompositions in M^q ?

- Concentration compactness in Banach spaces (1 $\leq q <$ 2)
- Handcrafting profiles (q = 1)
- Start from CC in L^2 (since $M^q \hookrightarrow L^2$), then prove that profiles actually belong to M^q with $\sum_j ||f_j||_{M^q} \le 1$ **non-trivial!**

Existence of optimizers holds (!) if **discrete norms** are used in M^q :

$$|f|_{\mathcal{M}^q} \coloneqq \Big(\sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g
angle|^q \Big)^{1/q},$$

where the Gabor transform is sampled along a full-rank lattice $\Lambda \subset \mathbb{R}^{2d}$ such that $\{\pi(\lambda)g : \lambda \in \Lambda\}$ is a Gabor frame for L^2 , that is

$$\sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g \rangle|^2 \asymp ||f||_{L^2}^2.$$

What next?

- Shape of optimizers what about special domains?
- Numerical explorations understand maximizing sequences
- Other TF representations Wigner distribution (TF covariant)?
- QHA UPs/optimization for mixed-state localization operators?

Thanks for your attention!

Find out more:

Nicola, Fabio; Romero, José Luis; Trapasso, S. Ivan.

On the existence of optimizers for time-frequency concentration problems.

Calc. Var. 62, 21 (2023)

DOI: 10.1007/s00526-022-02358-6 - arXiv:2112.09675

Free access link to the paper in my **personal homepage**.